## State Space Problem Solving Model for the Missionaries and Cannibals Problem

1. PROBLEM STATEMENT

There are three Missionaries ( $M$ ) and three Cannibals ( $C$ ), and one boat on a river that fits at most two people. At least one person is required to operate the boat. All six missionaries and cannibals must safely cross the river - under one condition; at no point should the number of cannibals outnumber the missionaries at any spot (left bank, right bank, boat) - otherwise, the missionaries will be consumed.
2. THE OBJECTS OF THE WORLD

- Three Missionaries
- Three Cannibals
- Three spots: The boat, the left bank and the right bank

3. REPRESENTATION OF A STATE IN THE WORLD

- Let $m$ be the number of marines in a given spot
- Let $c$ be the number of cannibals in a given spot
- Let $B, L B$ and $R B$ represent the Boat, Left Bank and Right Bank respectfully
- A state will be represented as: $\{L B=(m, c)|B=(m, c)| R B=(m, c)|m=0,1,2,3| c=$ 0,1,2,3|m$\geq \mathbf{c} \mid \mathrm{m}+\mathrm{c}<2$ for B$\}$

4. THE STATE SPACE DESCRIPTION

- Initial State: $\{L B=(3,3)|B=(0,0)| R B=(0,0)\}$
- Goal State: $\{L B=(0,0)|B=(0,0)| R B=(3,3)\}$

5. PARTIAL STATE SPACE GRAPH/TREE

- State Space Operators:
(1) Place 1 M and 1 C on boat: $\mathrm{LB}=(m-1, c-1)|B=(1,1)| R B=(m, c)$
(2) Place 2 C's on boat: $L B=(m, c-2)|B=(0,2)| R B=(m, c)$
(3) Place $1 C$ on boat ( $C$ already controlling boat): $L B=(m, c-1)|B=(0,2)| R B=(m, c)$
(4) Place 1 M on boat ( $C$ already controlling boat): $L B=(m-1, c)|B=(1,1)| R B=(m, c)$
(5) Drop $M$ on $R B: L B=(m, c)|B=(0,1)| R B=(m+1, c)$
(6) Drop C on RB: $L B=(m, c)|B=(0,1)| R B=(m, c+1)$


6. STATE SPACE SOLUTION

Step
(1)
(5)
(3)
(6)
(4)
(5)
(3)
(6)
(4)
(5)
(6)

State
$(3,3)(0,0)(0,0)$
$(2,2)(1,1)(0,0)$
$\quad(2,2)(0,1)(1,0)$
$(2,1)(0,2)(1,0)$
$(2,1)(0,1)(1,1)$
$(1,1)(1,1)(1,1)$
$(1,1)(0,1)(2,1)$
$(1,0)(0,2)(2,1)$
$(1,0)(0,1)(2,2)$
$(0,0)(1,1)(2,2)$
$(0,0)(0,1)(3,2)$
$(0,0)(0,0)(3,3)$

